Linking Environmental Conditions to Productivity

> Professor Alan Hedge, PhD, CPE Cornell University Dept. Design & Environmental Analysis NYS College of Human Ecology Ithaca, NY 14853-4401

(email: ah29@cornell.edu)

(Abbreviated slideshow based on a presentation at the Eastern Ergonomics Conference and Exposition, New York, June, 2004)

 Scattered studies that mostly show evidence of an association between indoor environment conditions and some measure of performance.

Research issues:

- Laboratory vs. field studies
- Single vs. multiple contaminants/conditions
- Surveys vs. interventions
- Short-term vs. longer-term
- Single exposure vs. multiple exposure
- Time-lagged effects
- Acute vs. chronic health effects

System	Environmental experience	Productivity Impact
Heating, Ventilating and Air Conditioning System	 Thermal comfort Indoor Air Quality Background noise Mechanical vibration Personal control/stress 	 Performance decreases when too cold Performance decreases when too hot Performance decreases in polluted air Performance decreases when too noisy Performance decreases when person/equipment vibrates Performance decreases with no control (perceived or real)

System	Environmental experience		Productivity Impact
Lighting System	 Illumination level/ distribution Glare 		Performance decreases when too dim or too bright Performance decreases when too glaring
	 Ambient/task systems 	•	Task demands and user age change light requirements
	ColorRoom ambience		Affective changes in environmental desirability
	(shadows) ● Personal	•	Disrupts visual inspection/ interpersonal interactions
	control/stress		Performance decreases with no control (perceived or real)

System	Environmental experience	Productivity Impact
Sound conditioning system/ Acoustic design	 Background noise Speech privacy/intelligibility Noise stress Personal control/stress 	 Performance decreases with loud/annoying noise Performance decreases with poor privacy Performance decreases with noise stress Performance decreases with no control (perceived or real)

IEQ factors and Human Performance

Optimal IEQ Conditions

OPTIMAL IEQ

(Source: Stanton, Hedge et al. (2004) Handbook of Human Factors and Ergonomics, CRC Press)

Productivity – Individual Work Performance

- Productivity research traditionally has focused at the coarse, aggregate level of the building and the occupants.
- Aggregate measures cannot define precise associations between IEQ conditions and individual productivity.
- Laboratory studies have investigated performance and exposure to specific pollutants and mixtures, but exposures are short-term, non-cumulative and use simulated work tasks
- Research need is to focus on the performance of the individual and the environment experienced by that the individual.
- Individual measures:
 - Self-reports
 - Task Performance (time, accuracy, quantity, quality)

IEQ and Productivity Research

- New Research Approach Combining spatiotemporal IEQ and Productivity Datasets
 - IEQ measure needs to include air temperature and relative humidity because thermal conditions are known to influence work performance, and consequently could confound any associations with air pollutants.
 - Most HVAC systems are designed to regulate thermal conditions, and HVAC systems respond to thermostat controls.
 - Thermal conditions impact levels of VOCs and other pollutants
 - Thermal conditions are an indicator of ventilation quality.
 High temperatures can indicate poor ventilation which in turn can indicate high pollutant loads.

IEQ Data Logging

IEQ logging units that can be:

- Widely dispersed throughout a building
- Small size
- Silent operation
- Self-powered
- "Inexpensive"
- Frequent logging/data storage capabilities
- Ideally, work computer synchronized
- Ideally, collect data on a wide array of IEQ variables.

Average Daily Temperature Pattern Insurance company (Florida)

- 9 workstations for 16 work days

Average Daily Humidity Pattern Insurance company (Florida) 9 workstations for 16 work days

Electronic Productivity Measures

- Keystrokes/errors/mouse activity
- Utilize existing networked data collection software (EMS)
- Data file every work minute the software records a count of:
 - Correct keystrokes
 - Errors
 - Mouse activity
 - Longitudinal data (e.g. every 15 minutes for 16 days)

Electronic Productivity Measures

Example of data structure (does not show errors column)

lagniTud	8							
og File Deta	il for Monday, N	ovember 27	, 2000 - Minute	by Minute Re	port			
rinted Sund	ay, June 17, 200	1. User: K	ATHY ABRAM	S of ABC Com	pany, Inc.			
		Keu	Keu	Keu	Mouse	Mouse	Mouse	Mouse
		Alert	Work	Rest	Activity	Alert	Work	Rest
lime	Keystrokes	Level	Minutes	Minutes	Seconds	Level	Minutes	Minutes
9:00 AM	+):		18	1	-		26	•
9:01 AM	• S		18	2		*	26	1
9.02 AM	10		18	3	Ċ.		26	2
9:03 AM	2 C		18	4			26	3
9:04 AM	. 3	(•)	18	5	-	-	26	4
9:05 AM	21		18	6	12	21	26	5
9:06 AM	6		18	7	12		26	6
9:07 AM	13		19		24	÷.	27	
MA 80:6	•.c		20	1	31		28	-
MA.60.6	98		20	1	7		29	
						1		

Average Daily Keying Pattern
 Insurance company (Florida)

 9 workstations for 16 work days

Average Daily Mousing Pattern Insurance company (Florida) 9 workstations for 16 work days

Average Daily Error Pattern
 Insurance company (Florida)

 9 workstations for 16 work days

Keystrokes and Mousing

Insurance company (Florida)

- 9 workstations for 16 work days

Humidity and Keystrokes

Insurance company (Florida)

- 9 workstations for 16 work days

Light and Keystrokes

Insurance company (Florida)
 – 9 workstations for 16 work days

Temperature and Keystrokes
 Insurance company (Florida)

 9 workstations for 16 work days

Temperature and Errors
 Insurance company (Florida)
 9 workstations for 16 work days

Mouse Seconds

Dependent Variable: Mouse Seconds

					95% Confidence Interva	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	176.333	3.505	50.308	.000	169.461	183.206
Temperature ² (nTa°C)	5.325	2.301	2.314	.021	.814	9.836
RH ² (nRH)	207	.101	-2.050	.040	405	009

Mouse seconds=176.33 + 5.33(nTa) ² - .21(nRH)²

Note: Environment variables normalized

Dependent Variable: Keystrokes

					95% Confidence Interval		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	
Intercept	204.522	5.411	37.798	.000	193.913	215.131	
Light (nL)	2.446	.348	7.029	.000	1.764	3.128	
Temperature (nTa°C)	33.087	5.444	6.078	.000	22.413	43.761	
Temperature ²	19.306	4.373	4.415	.000	10.732	27.879	

Keystrokes=204.52 + 2.45(nL)+ 33.09(nTa) + 19.31(nTa)²

Note: Environment variables normalized

Dependent Variable: Error Keys

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	48.584	1.128	43.058	.000	46.371	50.796
Temperature (nTa°C)	-3.694	.937	-3.941	.000	-5.531	-1.856
RH (nRH)	.525	.188	2.800	.005	.157	.893
Light (nL)	.716	.059	12.165	.000	.600	.831
Temperature ²	2.021	.743	2.722	.007	.565	3.477
RH ²	082	.032	-2.515	.012	145	018

Errors=48.58 - 3.69(nTa)+.53 (nRH)+.72 (nL) + 2.02 (nTa)² - .08 (RH)²

Note: Environment variables normalized

Temperature and Performance

Temperature and Cost

Assumptions:

- Employee earns\$16 per hour
- Keying time = 900-mouse time seconds
- Total keys = correct + error keys
- Cost/key = keying time/total keys
- Error costs = error keys X costs per key
- Hourly costs = 4 x error costs

Research Conclusions

- Results show clear associations between office work performance and indoor environment conditions
- Results suggest that performance improves as conditions approach a predicted thermal comfort zone
- Raising temperature from 20°C to 25°C:
 - Reduces energy consumption (less cooling)
 - Reduces costs
 - Reduces errors by 44%
 - Increases keying output by 150%
 - Saves ~\$2.00 per worker in lost productivity
- With optimization of other environmental conditions the cost savings will be even greater!

Research Conclusions

- Study confirms the utility of this new metric for assessing the performance and financial impacts of IEQ changes.
- Associations between changes in specific indoor environmental variables and consequent productivity changes can now be investigated.
- The impact of IEQ changes (e.g. different lighting, different HVAC systems) on productivity can now be tested.
- The impact of any ergonomic changes (e.g. new chairs, new workstations, keyboard trays) on productivity can now be tested.
- Data for IEQ standards that can incorporate productivity impacts can now be gathered.

